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Motivation

Data Structure
As data grow in volume and complexity, it is increasingly common to record them as
high-dimensional arrays or tensors, in many fields, such as neuroimaging (Spencer et al.,
2022; Guha and Rodriguez, 2021), biostatistics, financial networks (Billio et al., 2024), or
even more generally, in time series (Billio et al., 2023).

Tensor Data Regressions
Scalar response on covariate tensor (Guha and Rodriguez, 2021) or tensor response on
covariate tensor (Wang and Xu, 2024; Billio et al., 2023).

Modelling Issues
Tensor models have been studied extensively in a linear framework. Common challenge:
model misspecification, regimes, breaks,.... Solution: time-varying parameters.
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A Tensor Regression Model

A new Bayesian tensor model for multiple-equation regressions that accounts for latent
regime changes is proposed.

A We extend the soft tensor linear regression models (Guha and Rodriguez, 2021;
Papadogeorgou et al., 2021; Wang and Xu, 2024) to an HMM (or MS) framework to
accommodate structural breaks.

B The Parallel Factor (PARAFAC) representation, also called CANDECOMP/PARAFAC
or Polyadic Decomposition (see Kolda and Bader, 2009), of the coefficient tensor is
driven by a common hidden Markov chain process.

C We consider a multi-equation setting with possibly different response variables
across equations.

D A Bayesian inference procedure that relies on numerical exploration of the posterior
via a new and efficient Gibbs sampler, which reduces computational costs and
improves scalability.
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Tensor Algebra
Tensor Representation

Two major tensor representation methods often used in the literature: CP
(CANDECOMP/PARAFAC) and Tucker. (Kolda and Bader (2009))
CP Representation: given a 3-mode tensor B ∈ RI×J×K

B =
D∑

d=1

ad ⊗ bd ⊗ cd

where ad ∈ RI ,bd ∈ RJ ,cd ∈ RK are the marginals from the CP decomposition, D is the
rank of the tensor, ⊗ represents the outer product.

Dimensionality reduction: I × J × K → (I + J + K )D.
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Tensor Algebra
Hard vs Soft PARAFAC

Figure: Hard vs Soft PARAFAC (Papadogeorgou et al., 2021)
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The Model
A Markov-Switching Multiple-equation Tensor Regression Model:

y1t = µ1(st)+ < B1(st),Xt > +σ1(st)ε1t

... (1)
yNt = µN(st)+ < BN(st),Xt > +σN(st)εNt

where t = 1, . . . ,T , Xt ,Bℓ (st) are p1 × p2 matrices, < ·, · > denotes inner product. The latent
process is a K -state Markov chain process and the parametrization used is

µℓ(st) =
K∑

k=1

µℓk I(st = k), Bℓ(st) =
K∑

k=1

Bℓk I(st = k), σℓ(st) =
K∑

k=1

σℓk I(st = k)

Assume the following decomposition:

Bℓk =
D∑

d=1

B(d)
ℓ,k,1 ∗ B(d)

ℓ,k,2

where ∗ is the Hadamard product, B(d)
ℓ,k,m,m = 1,2 are the multiplicative factors. D is the number of

components used to decompose the tensor.
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Hierarchical Priors

We use shrinkage priors to favor sparsity:

B(d)
m ∼ MN p1,p2

(
G(d)

m , τσ2
mζ

(d)Ip1 , Ip2

)
(2)

γ
(d)
m ∼ Npm(0, τζ

(d)W (d)
m ) (3)

w (d)
m,jm ∼ Exp((λ(d)

m )2/2) (4)

λ
(d)
m ∼ Ga(aλ,bλ) (5)
σ2

m ∼ Ga(aσ,bσ) (6)
τ ∼ Ga(aτ ,bτ ) (7)

(ζ(1), . . . , ζ(D)) ∼ Dir(α/D, . . . , α/D) (8)

where m = {1,2} is the number of mode, p1,p2 are the size of each mode.
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Selection of Hyperparameters

The choice of hyperparameters can have a large effect on the performance of the model.
We follow the strategy in (Papadogeorgou et al. (2021)) to choose the hyperparameters
by studying the properties of induced prior variance on the coefficients B.

In particular, we choose the hyperparameters such that Var(Bij) = V ∗ and the additional
variance introduced by the softening equals to AV ∗. Bij denotes the entry of B.

We found that:

V(Bij) =
aτ (aτ + 1)

b2
τ

C
(

aσ

bσ
+

2b2
λ

(aλ − 1) (aλ − 2)

)2

(9)

aσ

bσ
=

bτ

aτ

√
aτV ∗

(aτ + 1)C

(
1 −

√
1 − AV ∗

)
(10)

where C =
α
D +1
α+1 .

In simulation we use V ∗ = 1 and AV ∗ = 10%.
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Full Conditionals

Let θ = (θ1, . . . ,θK ) be the collection of the state-specific parameters θk = (βk , γk , ζk ,
τk ,λk ,wk , σ

2
k , µk ) and denote with y = (y1, . . . , yT ), X = (X1, . . . ,XT ) and s = (s1, . . . , sT )

the collection of response variables, covariates and state variables, respectively.
The joint posterior of the unknowns of the model is given by

p (θ,s | y ,X ) (11)

The joint posterior is not tractable, we approximate using the full conditionals for each of
the parameters.

Casarin (UCF) MSTR 9 / 34



MCMC-Gibbs Sampler

We propose a MCMC procedure based on Gibbs sampling to sample the unknowns from 3 blocks.

Block 1: Sampling β
(d)
m,jm , γ

(d)
m,jm , σ

2
m, σ

2, µ from p
(
β
(d)
m,jm , γ

(d)
m,jm , σ

2
m, σ

2, µ | Y ,X 1, . . . ,X T

)
Block 2: Sampling ζ(d) and τ from p(ζ(d), τ | B,γ,w)

Block 3: Sampling λ
(d)
m and w (d)

m,jm from p(λ(d)
m ,w (d)

m,jm |γ
(d)
m,jm , τ, ζ

(d))

For the hidden states, we apply a Forward Filtering Backward Sampling (FFBS) strategy:

Draw transitional probabilities (p1k , . . . ,pKk ) from Dirichlet distribution p (p1k , . . . ,pKk | s).

Compute iteratively the vector of smoothed probabilities ξt|T by using Hamilton Filter, and
draw the state vector st from a multinomial distribution M

(
1, ξt|T

)
.
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Backfitting

Proposition 1: Backfitting
The model in Eq.(1) can be written as:

yt = β
(d)
m,jm

′
Ψjmdt + Rjmdt + Rdt + σ2εt

where the residual terms Rdt , Rjmdt and auxiliary covariate vector Ψjmdt are:

Rdt =
∑
d ′ ̸=d

< B(d ′)
1 ◦ · · · ◦ B(d ′)

M ,Xt >

Rjmdt =< (B(d)
1 ◦ · · · ◦ B(d)

M )−jm , (Xt)−jm >

Ψjmdt = vec(B(d)
1 ◦ · · · ◦ B(d)

m−1 ◦ B(d)
m+1 ◦ · · · ◦ B(d)

M ◦ Xt )̃jm
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MCMC-Random Partial Scan Gibbs

For the first 10 Gibbs iterations, we run full scan for every rank and every mode to recover
the main structure of the coefficients. Then we perform Random-Partial-Scan Gibbs to
randomly select a subset of components to update for each iteration.

Algorithm The steps in a Random Partial Scan Gibbs

1: Draw uniformly J ⊂ {1, . . . ,n} a random set of indices of size n∗ ≤ n so that each
subset has an equal chance of being selected.

2: If J = (j1, . . . , jn∗), update θJ = (θj1 , θj2 , . . . , θjn∗ ) using a random scan and leave the
other components of θ unchanged.

performance
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Simulations
Tensor Regression

Simulation settings:
4 experimental settings
ranging from different
ranks and different levels
of sparsity.

Matrix predictor with
dimensions 20 x 20

Number of observations:
400

Gibbs iterations: 3000

robustness checks

Figure: Estimated coefficients for four experimental settings using three different ranks
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Simulations
Tensor Regression

Figure: Raw MCMC output and progressive average of
entry B1,1 for different types of coefficients

Figure: Approximated posterior distribution
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Simulation
Markov Switching

Simulation settings
2 sets of true coefficients are used to
represent 2 different regimes, both i.i.d
covariates and AR(1) covariates are used
in the simulation.

Matrix predictor with dimensions 12 × 12

Regime specific intercepts: µ1 = µ2 = 0
Regime specific variances:
σ2

1 = 2, σ2
2 = 0.1.

Number of observations: 800

Gibbs iterations: 3000

more results

Figure: Markov-switching model with Diagonal and Anti-diagonal coefficients
(first row) and with Cross and Diagonal coefficients (second row).
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Simulation
Convergence diagnostic

Table: MCMC convergence and efficiency

Setting SMS
1 (anti-diag / diag)

ACF(1) ACF(5) ACF(10) MSE(10) MSE(100)

Coefficients (B) 0.4085
(0.3145)

0.3279
(0.2328)

0.3158
(0.0980) 0.0559 0.0083

States(st )
0.5624
(0.5448)

0.5437
(0.3878)

0.5333
(0.1942) 0.2725 0.0113

Setting SMS
2 (cross / diag)

Coefficients (B) 0.5139
(0.4247)

0.4425
(0.2819)

0.4410
(0.1650) 0.1773 0.0106

States(st )
0.5294
(0.5153)

0.5166
(0.3649)

0.5077
(0.1831) 0.3013 0.0050

Table 1 documents the results on convergence for the two different experimental settings. The second column of the table reports the ACFs of the parameters and
the hidden states before and after thinning, where the results after thinning are reported in parentheses. The third column reports the MSE of the parameters and
hidden states at the 10th and 100th Gibbs iteration.
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Simulation
Model Selection

To understand how the number of components and regimes affects the inference, we
conducted further simulation experiments with 3 regimes and an increasing number of
components D = 3,5,7.
We evaluate the performance of different models with different combinations of
components and regimes using the Watanabe-Akaike Information Criterion (WAIC)
(Watanabe and Opper, 2010) to provide some guidelines on choosing D and K .

D = 3 D = 5 D = 7
K = 2 2211.74 2613.94 2558.18
K = 3 4095.90 4169.02 4257.44

Table: WAIC-based model comparison for Markov-Switching Tensor Regression. D is the number
of components for tensor decomposition, and K is the number of regimes. The model with the
best performance is shown in boldface.
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Oil and Stock Daily volatility – Variables

Main variables
Daily volatility index of the US market (VIX) and the crude oil ETF volatility index (OVX).
VIX measures the market’s expectations and sentiments; thus, predicting VIX is crucial for

developing investment strategies.

Heterogenous Autoregressive (HAR)
Fernandes et al. (2014) studied the long-range dependence in the VIX data by including a
vector of the average of the logarithm of VIX for the last h ∈ {1,5,10,22,66} days (to
mirror daily, weekly, bi-weekly, monthly and quarterly component) in a family of
heterogeneous autoregressive (HAR) processes.
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Oil and Stock Daily volatility - Model

Our model
We extend it to a multiple-equation tensor regression framework: VIX on OVX and OVX on VIX.
Define y1,t = VIXt and y2,t = OVXt

We include other covariates: the h day log-return for S&P 500 (SPt−h), exchange rate (proxy by
US dollar index, ERt−h), spot price of WTI crude oil (Oilt−h) for h ∈ {1, . . . ,44}.

Covariate tensor for each response variable is a 4 × 44 matrix.



VIXt = µ1(st) +

〈
B1(st),


SPt−1 . . . SPt−h . . . SPt−44

ERt−1 . . . ERt−h . . . ERt−44

Oilt−1 . . . Oilt−h . . . Oilt−44

OVXt−1 . . . OVXt−h . . . OVXt−44


〉

+ σ1(st)ε1t ,

OVXt = µ2(st) +

〈
B2(st),


SPt−1 . . . SPt−h . . . SPt−44

ERt−1 . . . ERt−h . . . ERt−44

Oilt−1 . . . Oilt−h . . . Oilt−44

VIXt−1 . . . VIXt−h . . . VIXt−44


〉

+ σ2(st)ε2t .

(12)
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Oil and Stock Daily volatility - Predictive ability

Models WAIC
In-sample Out-of-sample

MSE MAE h = 1 h = 5
MSE MAE MSE MAE

TR(2) 3231.06 0.3097 0.4324 0.2540 0.4232 0.3581 0.5182
MSTR(2, 2) 1907.28 0.0892 0.2376 0.1409 0.3342 0.1379 0.3063
MSTR(3,2) 911.11 0.0339 0.1447 0.3199 0.4024 0.1976 0.3388

TR(3) 3282.48 0.3445 0.4534 0.2172 0.4155 0.2905 0.4751
MSTR(2, 3) 2347.39 0.1019 0.2505 0.0939 0.2641 0.0659 0.2132
MSTR(3, 3) 518.13 0.0272 0.1221 0.9328 0.9398 0.3471 0.5236

LS − 0.3049 0.4266 0.1945 0.3474 0.3668 0.5211
LASSO − 0.4207 0.5259 0.5199 0.6363 0.6940 0.7589
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VIX Equation - MSTR and LASSO

(a) LS and LASSO (b) MSTR

Figure: Left: In-sample fitting for Least Squares (orange dashed) and LASSO (blue dashed).
Right: In-sample fitting of the Markov-Switching Tensor Regression model MSTR(2,2) (orange
dashed) and estimated hidden states (red solid). Actual VIX (green solid).
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VOX Equation - MSTR and LASSO

(a) LS and LASSO (b) MSTR

Figure: Left: In-sample fitting for Least Squares (orange dashed) and LASSO (blue dashed).
Right: In-sample fitting of the Markov-Switching Tensor Regression model MSTR(2,2) (orange
dashed) and estimated hidden states (red solid). Actual VOX (green solid).
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Asymmetric Effects - Impact of Oil

(a) VIX (b) OVX

Figure: MSTR(2, 2). Effects of h-day Oil log-returns, h ∈ {1, . . . , 44}. Lighter and darker colors: smaller and
larger h, respectively. 90% HPD (gray ellipses) only for the coefficients with asymmetric effects (ellipse does
not intersect the 45◦ line).

(1) Limited impact in the low-volatility regime. (2) Stronger effect on OVX than on VIX in the high-volatility
regime. (3) Long-term effects (dark red) on VOX (Bandi and Perron, 2006; Corsi, 2009)
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Asymmetric Effects - Impact of S&P 500

(a) VIX (b) OVX

Figure: MSTR(2, 2). Effects of h-day S&P 500 log-returns h ∈ {1, . . . , 44}. Lighter and darker colors:
smaller and larger h, respectively. 90% HPD (gray ellipses) only for the coefficients with asymmetric effects
(ellipse does not intersect the 45◦ line).

(1) Limited effect in the low-volatility regime. (2) Medium lags have a larger effect than lower and higher lags.
(3) Larger impact on VIX.
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Concluding Remarks

A new Markov switching multiple-equation tensor regression model capable of
extracting a common latent factor (latent regime changes) is proposed.
A low-rank representation of the coefficient tensor and hierarchical prior distribution
are proposed to introduce shrinkage effects to overcome overparametrization.
An efficient MCMC sampler is proposed based on back-fitting and random scan
strategies.
The tensor regression model is readily to be used with tensor covariates with order 2
or 3.

Thanks!!!
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Robustness Check

We tweaked a bit with hyperparameters to change the piror mean and variance of the
scales while still maintaining V ∗ = 1,AV ∗ = 10%.

benchmark robustness
α 1 1
aσ 0.5 0.5
bσ 8.5

√
C 2

√
C

aτ 3 3
bτ 33.75

√
C/bσ 33.75

√
C/bσ

aλ 3 3
bλ a1/4

λ a1/2
λ

back
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Robustness Check
Noisy True Coefficients

Figure: Estimation results with noisy true coefficients

Casarin (UCF) MSTR 30 / 34



Simulations Results
Computational cost

Figure: Computational cost (mins)
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Simulations Results
Autocorrelation

Figure: Autocorrelation before and after thining
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Simulation Results
Intercepts and Variance of MS

Figure: Trace plots after removing the burn-in samples for regime specific intercepts (left) and variances
(right) for the SMS

2 experimental setting. True values are µ1 = µ2 = 0, σ2
1 = 2, σ2

2 = 0.1.

back
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Random Partial Scan Gibbs
back

Figure: Upper left: computational cost (CPU time in minutes) for |ID | = 1, . . . , 5 (horizontal axis) and |IM | = 1 (blue bar),
|IM | = 2 (orange bar). Upper right: Autocorrelation at the 10-th lag for different (|ID |, |IM |). Bottom left: Effective sample
size. Bottom right: Effective sample size per computational unit (minute).
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