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Chapter 1: Markov-switching multiple-equation tensor regression
A new Bayesian tensor model for multiple-equation regressions that accounts for latent regime
changes is proposed.

1 We extend the tensor linear regression models (Guhaniyogi et al., 2017; Papadogeorgou
et al., 2021) to an HMM (or MS) framework to accommodate structural breaks.

2 We consider a multi-equation setting with possibly different response variables across
equations.

3 A low-rank representation of the coefficient tensor and hierarchical prior distribution are
proposed to introduce shrinkage effects to overcome overparametrization.

4 An efficient MCMC sampler is proposed based on back-fitting (Härdle and Hall, 1993) and
random scan (Łatuszyński et al., 2013; Yang et al., 2019) strategies.

Casarin, R., Radu, C., Wang, Q. (2025), Markov Switching Multiple-equation Tensor Regressions, Journal of
Multivariate Analysis, 208, 105427

Casarin, R., Craiu, R., Wang, Q. (2025). Markov Switching Tensor Regressions. In: Aneiros, G., Bongiorno, E.G.,
Goia, A., Hušková, M. (eds) New Trends in Functional Statistics and Related Fields. IWFOS 2025. Contributions to
Statistics. Springer, Cham.
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Goia, A., Hušková, M. (eds) New Trends in Functional Statistics and Related Fields. IWFOS 2025. Contributions to
Statistics. Springer, Cham.

Q. Wang (Ca’ Foscari University of Venice) CBTR Pre-Defense 3 / 52



Chapter 1: Markov-switching multiple-equation tensor regression
A new Bayesian tensor model for multiple-equation regressions that accounts for latent regime
changes is proposed.

1 We extend the tensor linear regression models (Guhaniyogi et al., 2017; Papadogeorgou
et al., 2021) to an HMM (or MS) framework to accommodate structural breaks.

2 We consider a multi-equation setting with possibly different response variables across
equations.

3 A low-rank representation of the coefficient tensor and hierarchical prior distribution are
proposed to introduce shrinkage effects to overcome overparametrization.

4 An efficient MCMC sampler is proposed based on back-fitting (Härdle and Hall, 1993) and
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Chapter 3: Bayesian tensor regression with stochastic volatility

1 Introduce a novel Bayesian tensor regression model where the residual variances
evolve according to a stochastic volatility (SV) process.

2 Allow for multi-way predictors (e.g., time × asset × feature) and incorporate SV to
capture heteroskedasticity common in financial and macroeconomic data.

3 Propose a tailored MCMC sampler for the high-dimensional tensor-SV model that
improves mixing and convergence.

4 Compare the performances of different competing SV models in predicting realized
volatility on S&P 500.
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Background: A primer on tensor

Tensors⇔ Multi-dimensional array

Mode −0 Mode −1 Mode −2 Mode −3
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Background: A primer on tensor

A real valued mode-D tensor is an array X ∈ Rd1×...×dD .
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Background: Tensor regression

Linear regression:

yt = β>x t + σεt , εt ∼ N (0,1)

where yt ∈ R, β ∈ Rd , x t ∈ Rd .

Tensor regression:

yt = 〈B,Xt〉+ σεt , εt ∼ N (0,1)

where 〈, 〉 denotes the inner product, B,Xt ∈ Rd1×d2×...×dD .
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Background: Tensor decomposition

Several tensor representations/decompositions available (Tucker, PARAFAC, . . . )

PARAFAC(R) decomposition

Let X ∈ Rd1×...×dD and let R ∈ N be the rank of X . It holds:

X =
R∑

r=1

γ
(r)
1 ◦ . . . ◦ γ

(r)
D , γ

(r)
j ∈ Rdj . (1)

Remark: multi-dimensional analogue of matrix low rank decomposition.

X
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Background: Tensor multiplication

n-mode product: multiplying a tensor with a matrix
Let X ∈ RI1×I2×...×IN and U ∈ RJ×In , the n-mode product between X and U is denoted by X ×n U, and
defined elementwise as

(X ×n U)i1...in−1 j in+1...iN
=

In∑
in=1

Xi1...iN ujin

the result is a tensor of size I1 × · · · × In−1 × J × In+1 × · · · × IN (Kolda and Bader, 2009).

Figure: Visualization of 1− mode product
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Background: Tensor multiplication

n−to−m mode product (contract product)

Let X ∈ RJ1×...×JN×I1×...×IM and Y ∈ RI1×...×IM×K1×...×KP , the n−to−m mode product
between X and Y is denoted by X ×N+1:N+M Y, and defined elementwise as

(X ×N+1:N+M Y)j1...jNk1...kP
=

I1∑
i1=1

· · ·
IM∑

iM =1

Xj1...jn i1...inYi1...ink1...kp

the result is a tensor of size J1 × · · · × JN × K1 · · · × KP .
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Chapter 2: Compressed Bayesian Tensor Regression
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Motivation

High dimensional data
As data grow in volume and complexity, it is increasingly common to record them as high-dimensional arrays
or tensors containing massive number of regressors in neuroimaging (Spencer et al., 2022; Guha and
Rodriguez, 2021), biostatistics (Clarke et al., 2008) and economics and finance (Billio et al., 2024, 2023).
Needs of dimensionality reduction.

Raw data (400 covariates)
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Motivation

Computational bottleneck and random projections
Traditional dimensionality reduction techniques, e.g., PCA, LDA, SDR, despite of their effectiveness are
computationally prohibitive when number of regressors is large. Random projection has proven to be
effective and computationally efficient (Guhaniyogi and Dunson, 2015; Indyk and Motwani, 1998).

Raw data (400 covariates)

Compressed data (36 covariates)
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Contributions

Random projection for tensor
Despite the extensive application of RP, little is studied on applying RP to tensor
structured data as well as on their theoretical properties.

1 We propose a generalized tensor random projection (GTRP) method that embeds
high-dimensional tensor-valued covariates into low-dimensional subspaces with
minimal loss of information about the responses.

2 Strong theoretical support is provided for the concentration properties of the random
projection and consistency results of the Bayesian inference.

3 A Bayesian inference framework is provided featuring the use of hierarchical prior
distribution and low-rank representation of the parameter.
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Random projection

Random projection: a technique of projecting a set of points from a high-dimensional space to
a randomly chosen low-dimensional subspace.

How to project:
1 Let u = (u1, . . . ,ud )> be a column vector in d-dimensional Euclidean space.

2 Select a k -dimensional subspace represented by d × k matrix R with k ∈ N and k < d .

3 The projection will be

f (u) =
1√
k

R>u (2)

The scaling factor 1/
√

k ensures E(‖f (u)‖) = ‖u‖.
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Random projection

Choosing R: Let rij be the ij th entry of R and are independently drawn from one of the
following distributions satisfying E(rij) = 0,V(rij) = 1:

Gaussian

rij ∼ N (0,1) (3)

Rademacher

rij =

{
+1 w.p 1

2

−1 w.p 1
2

(4)

Sparse

rij =
√
ψ


+1 w.p 1

2ψ

0 w.p 1− 1
ψ

−1 w.p 1
2ψ

(5)

ψ ∈ N
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Random projection

Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984)

Given ε > 0 and an integer n, let k be a positive integer such that k ≥ k0 = O(ε−2 log n),
for every set P of n points in Rd there exists f : Rd → Rk such that for all u,v ∈ P

(1− ε) ‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε) ‖u − v‖2

Achlioptas (2003)

Let P be an arbitrary set of n points in Rd . Given ε, β > 0, for integer
k ≥ k0 = (4 + 2β)(ε2/2− ε3/3)−1 log n, let R be the d × k random matrix with entries i.i.d
from (4) or (5) and f : Rd → Rk defined in (2). With probability at least 1− n−β, for all
u,v ∈ P

(1− ε) ‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε) ‖u − v‖2
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Literature
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Generalized Tensor Random Projection (GTRP)

A compressed Bayesian tensor regression model

yj = µ+
〈
B,GTRP(Xj)

〉
+ σεj , εj

iid∼ N (0,1) (6)

where j = 1, . . . ,n, B ∈ Rq1×...×qM is the coefficient tensor, Xj ∈ Rp1×...×pN is the covariate
tensor for the j th observation.

GTRP(): Rp1×...×pN → Rq1×...×qM

GTRP(Xj) := Xj ×1 H1 ×2 . . .×R HR ×R+1:N HR+1:N , (7)

where ×n and ×n:m denote the n-mode and the n-to-m mode products, Hm ∈ Rqm×pm ,
m = 1, . . . ,R and H ∈ RqR+1×...×qM×pR+1×...×pN× are random projection matrices and
M-mode random projection tensor, respectively, with R ≤ M ≤ N.
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Generalized Tensor Random Projection

Definition 1 (mode-wise random projection)
A random projection is called mode-wise (GTRP-M) when taking the n-mode product
between X and Hm: X ×m Hm.

Example 1 (mode-wise random projection with mode preserving)

Considering a mode-wise random projection for X ∈ R3×2, f (X ) = X ×1 H1 ×2 H2, where
H1 ∈ R2×3 random matrix, H2 = I2, f (X ) : R3×2 → R2×2 with the entries,

f (X )i1,i2 =
3∑

j1=1

2∑
j2=1

Xj1,j2H1,i1,j1H2,i2,j2

=
3∑

j1=1

2∑
j2=1

Xj1,j2H1,i1,j1δ(j2 = i2) =
3∑

j1=1

Xj1,i2H1,i1,j1
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Generalized Tensor Random Projection

Definition 2 (tensor-wise random projection)
A random projection is called tensor-wise (GTRP-T) when taking the n-to-m mode product
between X and H: X ×n:m H.

Example 2 (tensor-wise random projection)

Considering a tensor-wise random projection for X ∈ R3×2, f (X ) = X ×1:2 H, where
H ∈ R3×2×3 random tensor, f (X ) : R3×2 → R3 with the entries,

f (X )i1 =
3∑

j1=1

2∑
j2=1

Xj1,j2Hj1,j2,i1
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Generalized Tensor Random Projection: special cases

(a) If R = 0, M = 1, GTRP corresponds to the random projection from Nth-order tensor to
q1 dimensional vector: Rp1×...×pN → Rq1 . This setting doesn’t exploit the original
multiple-mode data structure and it is equivalent to the random projection in
Achlioptas (2003) with d = p1 × . . .× pN and k = q1 applied to the vectorized tensor.

(b) If R = 0, M ≥ 1, only GTRP-T(Xj)i1,...,iM =
〈
Xj ,Hi1,...,iM ,:

〉
is carried out, which returns

an M-mode tensor. If M = N, the number of modes will be preserved, while only the
dimensions along each mode will be reduced. If M < N, then not only the
dimensions of the tensor will be reduced, but the number of the modes will also be
reduced from N to M.

(c) If R > 0, N = M = R + 1, only GTRP-M is carried out, where the dimension along
each mode is reduced from pm to qm, but the number of modes is preserved.

(d) If R ≥ 1,M ≥ R + 1, the GTRP involves both mode-wise random projection for the first
R modes and tensor-wise random projection for the (R + 1)th to Nth modes.
Similarly, mode reduction can be performed by choosing M < N.
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Concentration inequalities I

Corollary 1 (A JL inequality for tensor-wise random projection)

Let X be an arbitrary set of n order N tensors in Rp1×...×pN . Define
GTRP(X ) = X ×1:N H1:N with H1:N an N + 1 order random tensor in Rp1×...×pN×q1 with
entries from the distribution in (5), and the multilinear mapping f (X ) =

√
c(N)GTRP(X )

from Rp1×...×pN to Rq1 . Given ε, β > 0, and a positive integer q1 ≥ q0 where
q0 = (4 + 2β)(ε2/2− ε3/3)−1 log n, f satisfies with high probability and for all tensors
U ,V ∈ X:

(1− ε)‖U − V‖2 ≤ ‖f (U)− f (V)‖2 ≤ (1 + ε)‖U − V‖2

Proof.
Follows immediately from Achlioptas (2003).
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Concentration inequalities II

Theorem 3 (JL inequality for mode-wise random projection)

Let X be an arbitrary set of n order N tensors in Rp1×...×pN . Define
GTRP(X ) = X ×1 H1 ×2 . . .×N HN , where the entries of Hm ∈ Rpm×qm for m = 1, . . . ,N follows the
distribution given in (5). Define the multilinear mapping f (X ) =

√
c(N)GTRP(X ) from Rp1×...×pN to

Rq1×...×qN . Given ε, β > 0 and a sequence of positive integers qj j = 1, . . . ,N such that q(N) ≥ q0
with

q0 =
4 + 2β

ε2

3N−1 −
(3N+1−2)ε3

3(3N−1)3

log n,

with probability at least 1− n−β , and for all U ,V ∈ X, f satisfies

(1− ε)‖U − V‖2 ≤ ‖f (U)− f (V)‖2 ≤ (1 + ε)‖U − V‖2

Special case: N = 1
q0 ≈ (4 + 2β)(ε2/2− ε3/3)−1 log n
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Bayesian inference: prior assumptions

We specify a hierarchical prior distribution for the regression parameters.

In the first stage

γ
(d)
m ∼ Nqm (0, τζ(d)W (d)

m ), m = 1, . . . ,M,d = 1, . . . ,D (8)

At the second stage, we modify the priors from Guhaniyogi and Dunson (2015) and
further assume the following prior distributions for the scales:

τ ∼ IG(aτ ,bτ ) (9)

w (d)
m,jm ∼ Exp((λ

(d)
m )2/2) (10)

λ
(d)
m ∼ Ga(aλ,bλ) (11)

(ζ(1), . . . , ζ(D)) ∼ Dir(α, . . . , α) (12)
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Bayesian inference: convergence properties

Definition 3 (Posterior consistency)
The posterior distribution πn(· | D(n)) is said to be weakly (strongly) consistent at θ0 ∈ Θ if
πn(θ : d(θ, θ0) > ε | D(n))→ 0 in P(n)

θ0
-probability (almost surely), as n→∞, for every ε > 0.

Finite-dimensional and parametric models
Doob’s theorem (Doob, 1949) and Schwartz’s theorem (Schwartz, 1965).

Infinite-dimensional and nonparametric
Contract rate of posterior convergence: The posterior is said to contract at rate εn → 0 if
πn(f : d(f , f0) > Mnεn | D(n))→ 0 in P(n)

0 -almost surely, for every Mn →∞ as n→∞.

Ghosal et al. (2000) established sufficient conditions to show convergence of posterior measures.
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Bayesian inference: convergence properties

High-dimensional with compressed data

Jiang (2007) established sufficient conditions based on Ghosal et al. (2000) and shows
tailored Bayesian variable selection priors lead to near parametric rates in estimating the
predictive distribution f (y | x).

Guhaniyogi and Dunson (2015); Mukhopadhyay and Dunson (2020) show that Bayesian
regression with compressed data also enjoys similar theoretical guarantees.

Contribution of our paper

Extension of Guhaniyogi and Dunson (2015); Mukhopadhyay and Dunson (2020) to
accommodate tensor-valued covariates.

Study the consistency under different projection methods and different priors (PARAFAC).
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Background: (Jiang, 2007, Theorem 4)

Sufficient conditions
a Entropy condition: log N(εn,Pn) ≤ nε2

n for all large n. Controls the complexity of the
model space Pn by bounding the covering number.

b Tail mass condition: π(Pc
n ) ≤ e−2nε2

n for all large n. Ensures that the prior puts
negligible mass outside the model space.

c Prior concentration condition: π
(

f : dt (f , f0) < ε2
n
4

)
≥ e−nε2

n/4 for all large n.
Guarantees that the prior puts enough mass near the true density f0 (KL
neighborhood).

The predictive density is said to contract at rate εn → 0 if πn(f : d(f , f0) > Mnεn | D(n))→ 0
in P(n)

0 -almost surely, for every Mn →∞ as n→∞.
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Bayesian inference: convergency results I

Theorem 4

Let B ∼ T N (0,Σ1, . . . ,ΣN) a priori and λ̃n and λn be the largest and smallest eigenvalues of Σ1, . . . ,ΣN .
Further assume all the covariates are bounded, meaning |xjkl | < 1 and limn→∞

∑p1,n
j=1

∑p2,n
k=1

∑p3,n
l=1 |bjkl,0| < K .

Define D(R) = 1 + Rsup|h|≤R |a′(h)|sup|h|≤R | b
′(h)

a′(h)
|, θn =

√
qnpn. For a sequence εn satisfying 0 < ε2

n < 1,
nε2

n →∞, assume the following to hold

(i) qn log(1/ε2
n)

nε2
n

→ 0, log(qn)

nε2
n
→ 0, qn log D(θn

√
8λ̄nnε2

n)

nε2
n

→ 0

(ii) λ̄n ≤ Bqv
n , λn ≥ B1 (log(qn))−1

(iii) log(‖GTRP(X )‖)

nε2
n

→ 0, ‖GTRP(X )‖2 > 8 (K 2+1)
B1

log(qn)

nε2
n
, ∀X = X1, . . . ,Xn

for some positive constants B, B1, v , then

Ef0π
[
d(f , f0) > 4εn | (yi ,Xj )

n
j=1
]
≤ 4e−nε2

n/2

where π[· | (yj ,Xj )
n
j=1] is the posterior measure.
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Bayesian inference: convergency results II

Theorem 5

Let γ(d)
m ∼ Npm (0, τζ(d)W (d)

m ) a priori, and further assume that all covariates are
standardized and bounded, that is, |xjkl | < 1 and limn→∞

∑p1,n
j=1
∑p2,n

k=1
∑p3,n

l=1 |bjkl,0| < K . For
a sequence εn satisfying 0 < ε2

n < 1, nε2
n →∞, assume that the following hold for some

positive constant C
(iv) D(log(‖GTRP(Xi)‖) + log D)

∑M
m=1 qm,n < Mnε2

nC

(v) ε2
n = nδ with b − 1 < δ < 0 where

∑M
m=1 qm,n = O(nb)

then

Ef0π
[
d(f , f0) > 4εn | (yi ,Xj)

n
j=1

]
≤ 4e−nε2

n/2

where π[· | (yj ,Xj)
n
j=1] is the posterior measure.
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Sketch of proof: Setup and Notation

Tensor predictor: Xi ∈ Rp1×···×pD

Compressed predictor: GTRP(Xi)

Predictive density: f (y | 〈B,GTRP(Xi)〉)
Hellinger distance: d(f , f0) =

∫∫
(
√

f −
√

f0)νy (dy)νX (dX )

Prior: B ∼ N (0,Σ1,Σ2,Σ3)

Let Pn be the class of predictive densities induced by bjkl ∈ [−bn,bn], where bjkl is the
(jkl)th entry of B. Equivalently: B ∈ [−bn,bn]qn where qn =

∏D
d=1 qd ,n.
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Sketch of proof: Condition 1: Entropy Bound

We want:
log N(εn,Pn) ≤ nε2

n

Sketch:
Cover bjkl ∈ [−bn,bn] with `2-balls of radius δn

Lipschitz continuity of GLM ensures:

d(fB, fC) ≤ ‖B − C‖2

Choose δn = εn so:

log N(εn,Pn) ≤ qn log

(
bn

εn

)
Condition is satisfied if:

qn log

(
bn

εn

)
≤ nε2

n
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Sketch of proof: Condition 2: Prior Mass Outside Sieve

We want:
π(Pc

n ) ≤ e−2nε2
n

Sketch:
Pc

n = {B : ∃jkl , |bjkl | > bn}
Use Gaussian tail bound:

π(|bjkl | > bn) ≤ e−b2
n/(2λ̃n)

Union bound over qn dimensions:

π(Pc
n ) ≤ qn · e−b2

n/(2λ̃n)

Choose bn =

√
8λ̃nnε2

n to ensure exponential decay
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Sketch of proof: Condition 3: Prior Concentration Near Truth

Goal: Show the prior puts enough mass near the true model f0 by bounding

π
(
f : d(f , f0) < 1

4ε
2
n
)
≥ e−nε2

n/4

Sketch:

Let B0 be the true tensor coefficient and 〈Xi ,B0〉 the true signal.

We can show that for all large n: P
(
|〈GTRP(Xi ),B〉 − 〈Xi ,B0〉| < ε2

n
4η

)
> exp

{
− nε2

n
4

}
.

Let S =
{
B : |〈GTRP(Xi ),B〉 − 〈Xi ,B0〉| < ε2

n
4η

}
dt=1(f , f0) =

∫∫
f0
(

f0
f − 1

)
νy (dy)νX (dX ) = EX [g(u∗) (〈GTRP(Xi ),B〉 − 〈Xi ,B0〉)].

Choosing |g(u∗)| < η implies that dt (f , f0) is a subset of S, hence confirming condition 3.
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Bayesian inference: posterior approximation

The joint posterior distribution f (γ
(d)
m , ζ(d), τ, λ

(d)
m ,w (d)

m , σ2, µ | y ,GTRP(X )) is not tractable,
we approximated it using a Gibbs sampling procedure. The full conditional distributions of
the Gibbs sampler are:

1 Draw γ(d)
m from a multivariate normal distribution (back-fitting)

f (γ
(d)
m | y ,GTRP(X ),γ−m, τ, ζ,w , µ, σ2) for d ∈ {1, . . . ,D},m ∈ {1, . . . ,M}.

2 Draw ζ(d) from the GIG distribution f (ζ(d) | γ(d), τ,w (d)).
3 Draw τ from the GIG distribution f (τ | γ, ζ,w).
4 Draw λ

(d)
m from f (λ

(d)
m | γ(d)

m , τ, ζ(d)) which is a Gamma distribution.
5 Draw w (d)

m,jm from the GIG distribution f (w (d)
m,jm | γ

(d)
m,jm , λ

(d)
m , τ,ζ

(d)).
6 Draw σ2 from the IG distribution f (σ2|y ,GTRP(X ), µ,γ).
7 Draw µ from the Gaussian distribution f (µ | y ,GTRP(X ),γ, σ2).

Q. Wang (Ca’ Foscari University of Venice) CBTR Pre-Defense 36 / 52



Bayesian inference: posterior approximation

The joint posterior distribution f (γ
(d)
m , ζ(d), τ, λ

(d)
m ,w (d)

m , σ2, µ | y ,GTRP(X )) is not tractable,
we approximated it using a Gibbs sampling procedure. The full conditional distributions of
the Gibbs sampler are:

1 Draw γ(d)
m from a multivariate normal distribution (back-fitting)

f (γ
(d)
m | y ,GTRP(X ),γ−m, τ, ζ,w , µ, σ2) for d ∈ {1, . . . ,D},m ∈ {1, . . . ,M}.

2 Draw ζ(d) from the GIG distribution f (ζ(d) | γ(d), τ,w (d)).
3 Draw τ from the GIG distribution f (τ | γ, ζ,w).
4 Draw λ

(d)
m from f (λ

(d)
m | γ(d)

m , τ, ζ(d)) which is a Gamma distribution.
5 Draw w (d)

m,jm from the GIG distribution f (w (d)
m,jm | γ

(d)
m,jm , λ

(d)
m , τ,ζ

(d)).
6 Draw σ2 from the IG distribution f (σ2|y ,GTRP(X ), µ,γ).
7 Draw µ from the Gaussian distribution f (µ | y ,GTRP(X ),γ, σ2).

Q. Wang (Ca’ Foscari University of Venice) CBTR Pre-Defense 36 / 52



Simulation studies: Settings

TW MW

dimensionality
baseline: 20× 20
high-dim: 60× 60

tnesor coefficients

tensor covariates xij ∼ N (0,1)
training sample size n ∈ {500,1000,1500,2000}

compression rate c ∈ {.09, .16, .25, .36}
sparsity ψ ∈ {2,3,4}

number of RP L = 10
number of experiments 7680
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Simulation studies: results I
True TW MW MW (1) MW (2)

Figure: Simulation results: actual data against the predicted for different levels of sparsity (rows) and different types of
random projections (columns), using 10 independent projection tensors (colours). For each plot: training sample size:
n = 1000, compression rate: 0.36, ψ = 3.
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Simulation studies: results II

Figure: RMSE comparison across different types of random projection and different configurations in the baseline setting
(top) and different sample sizes (bottom) in the 20× 20 (left) and 60× 60 dimension case (right). Each estimate is
obtained BMA over L = 10 independent projection matrices and 500 data points from the validation set.
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Simulation studies: results III

Figure: Prediction errors. Left: RMSE vs actual distance (circle, right axis) and log-distance
(triangle, left axis) of 500 data points from their mean. Middle: MSE proportion of sample
variance. Right: MSE proportion of bias.
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Simulation studies: role of ψ

Figure: Effects of different ψ on prediction errors
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Simulation studies: role of n and c
n = 500 n = 1000 n = 1500 n = 2000

Figure: Comparison of prediction performance for different compression rates r ∈ {0.09, 0.16, 0.25, 0.36} using different
training sample size n ∈ {500, 1000, 1500, 2000}. Left column: scatter plots for out-of-sample predictions with regression
lines for different compression rates. Right column: RMSE of predictions for different compression rates.
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Empirical application: macro and financial indicators on stock return

Goals
We contribute to the debate on the interdependence between financial and oil
markets (see, e.g., Xiao and Wang, 2022; Xiao et al., 2023)
We compare the performance of different models: BTR, CBTR with different types of
random projections (with and without mode preserving).

Variables
Oil price volatility is classified into Good Oil Volatility (GV), where the realized volatility
is positive, and Bad Oil Volatility (BV), where the realized volatility is negative.
Other covariates are the Exchange Rate Volatility (ER), TED Spread Volatility (IR)
and VIX Index Volatility (VI), 3-month T-bill rate (TB) and bond spread (BD) following
a similar specification as in Xiao and Wang (2022).
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Empirical application

Specification
Different from Xiao and Wang (2022), we consider a Mixed Data Sampling (Rodriguez and Puggioni,
2010).

yt is the montly log-return of market (S&P 500) at time t . Time span: May 1990 to January 2022.

Covariates sampled daily at the 1st to 22nd day before month t : t − 1/22, t − 2/22, . . . , t − 22/22.

First mode: variables. Second mode: daily data points. Third mode: lagged values.

yt = µ+
4∑

i3=1

〈
BĨ(i3),



GVt− 1
22−i3+1 GVt− 2

22−i3+1 · · · GVt− 21
22−i3+1 GVt−i3

BVt− 1
22−i3+1 BVt− 2

22−i3+1 · · · BVt− 21
22−i3+1 BVt−i3

ERt− 1
22−i3+1 ERt− 2

22−i3+1 · · · ERt− 21
22−i3+1 ERt−i3

IRt− 1
22−i3+1 IRt− 2

22−i3+1 · · · IRt− 21
22−i3+1 IRt−i3

VIt− 1
22−i3+1 VIt− 2

22−i3+1 · · · VIt− 21
22−i3+1 VIt−i3

TBt− 1
22−i3+1 TBt− 2

22−i3+1 · · · TBt− 21
22−i3+1 TBt−i3

BDt− 1
22−i3+1 BDt− 2

22−i3+1 · · · BDt− 21
22−i3+1 BDt−i3



〉
+ σεt , (13)

where Ĩ(i3) = {(i1, i2, i3), ih ∈ {1, . . . , ph}, ∀h 6= 3} and BĨ(i3) denotes the i3th slice of tensor coefficients B
along the third mode.
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Empirical application

BTR CBTR-TW(0) CBTR-MW(0) CBTR-MW(1) CBTR-MW(1, 2)

Figure: Fitting comparison between BTR and CBTR with different random projection methods.
First row: in-sample fitting. Second row: out-of-sample prediction. True data are shown in gray
solid line, predicted values are shown in blue solid line, light and dark orange colors represent
95% and 50% credible interval, respectively.
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Empirical application

Table: RMSE of predictions of BTR and CBTR with different types of random projection methods.

BTR CBTR
TW MW MW(1) MW(1,2) MW(1,3) MW(2,3)

In-sample 0.0338 0.0355 0.0346 0.0356 0.0333 0.0323 0.0329
Out-of-sample 0.1148 0.0676 0.0623 0.0723 0.0383 0.0600 0.0508
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Conclusion

Contributions
A new random projection technique to compress tensor structured data.
Strong theoretical results on concentration properties of random projection and
convergency properties of Bayesian inference.
Bayesian compressed tensor regression offers better out-of-sample performance
with significant less of computational cost.

Q. Wang (Ca’ Foscari University of Venice) CBTR Pre-Defense 47 / 52



References I

Achlioptas, D. (2003). Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of
Computer and System Sciences, 66(4):671–687.

Ailon, N. and Chazelle, B. (2009). The fast Johnson–Lindenstrauss transform and approximate nearest neighbors. SIAM
Journal on Computing, 39(1):302–322.

Anagnostopoulos, A., Angeletti, F., Arcangeli, F., Schwiegelshohn, C., Vitaletti, A., et al. (2018). Random projection to
preserve patient privacy. In ACM 1st International Workshop on Knowledge Management for Healthcare (KMH2018).

Billio, M., Casarin, R., and Iacopini, M. (2024). Bayesian Markov-switching tensor regression for time-varying networks.
Journal of the American Statistical Association, 119(545):109–121.

Billio, M., Casarin, R., Iacopini, M., and Kaufmann, S. (2023). Bayesian dynamic tensor regression. Journal of Business &
Economic Statistics, 41(2):429–439.

Bingham, E. and Mannila, H. (2001). Random projection in dimensionality reduction: applications to image and text data.
In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages
245–250, San Francisco California. ACM.

Cannings, T. I. and Samworth, R. J. (2017). Random-projection ensemble classification. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 79(4):959–1035.

Chakraborty, A. (2023). Efficient Bayesian High-Dimensional Classification via Random Projection with Application to
Gene Expression Data. Journal of Data Science, pages 1–21.

Q. Wang (Ca’ Foscari University of Venice) CBTR Pre-Defense 48 / 52



References II

Clarke, R., Ressom, H. W., Wang, A., Xuan, J., Liu, M. C., Gehan, E. A., and Wang, Y. (2008). The properties of
high-dimensional data spaces: implications for exploring gene and protein expression data. Nature reviews cancer,
8(1):37–49.

Dasgupta, S. and Gupta, A. (2003). An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures
& Algorithms, 22(1):60–65.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the twentieth annual symposium on Computational geometry, pages 253–262.

Doob, J. L. (1949). Application of the theory of martingales. Le calcul des probabilites et ses applications, pages 23–27.

Farahmand, A.-m., Pourazarm, S., and Nikovski, D. (2017). Random projection filter bank for time series data. Advances in
neural information processing systems, 30.

Frankl, P. and Maehara, H. (1988). The johnson-lindenstrauss lemma and the sphericity of some graphs. Journal of
Combinatorial Theory, Series B, 44(3):355–362.

Ghosal, S., Ghosh, J. K., and Van Der Vaart, A. W. (2000). Convergence rates of posterior distributions. The Annals of
Statistics, 28(2).

Ghosal, S. and Van Der Vaart, A. W. (2001). Entropies and rates of convergence for maximum likelihood and Bayes
estimation for mixtures of normal densities. The Annals of Statistics, 29(5).

Goel, N., Bebis, G., and Nefian, A. (2005). Face recognition experiments with random projection. page 426, Orlando,
Florida, USA.

Q. Wang (Ca’ Foscari University of Venice) CBTR Pre-Defense 49 / 52



References III

Gondara, L. and Wang, K. (2020). Differentially private small dataset release using random projections. In Conference on
Uncertainty in Artificial Intelligence, pages 639–648. PMLR.

Guha, S. and Rodriguez, A. (2021). Bayesian regression with undirected network predictors with an application to brain
connectome data. Journal of the American Statistical Association, 116(534):581–593.

Guhaniyogi, R. and Dunson, D. B. (2015). Bayesian Compressed Regression. Journal of the American Statistical
Association, 110(512):1500–1514.

Guhaniyogi, R., Qamar, S., and Dunson, D. B. (2017). Bayesian tensor regression. Journal of Machine Learning Research,
18(1):2733–2763.
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Matoušek, J. (2008). On variants of the johnson–lindenstrauss lemma. Random Structures & Algorithms, 33(2):142–156.

Mukhopadhyay, M. and Dunson, D. B. (2020). Targeted Random Projection for Prediction From High-Dimensional
Features. Journal of the American Statistical Association, 115(532):1998–2010.

Papadogeorgou, G., Zhang, Z., and Dunson, D. B. (2021). Soft tensor regression. Journal of Machine Learning Research,
22:219–1.

Rakhshan, B. and Rabusseau, G. (2020). Tensorized random projections. In International Conference on Artificial
Intelligence and Statistics, pages 3306–3316.

Rodriguez, A. and Puggioni, G. (2010). Mixed frequency models: Bayesian approaches to estimation and prediction.
International Journal of Forecasting, 26(2):293–311.

Schwartz, L. (1965). On bayes procedures. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 4(1):10–26.

Q. Wang (Ca’ Foscari University of Venice) CBTR Pre-Defense 51 / 52



References V

Shi, Y. and Anandkumar, A. (2019). Higher-order Count Sketch: Dimensionality Reduction That Retains Efficient Tensor
Operations. arXiv:1901.11261 [cs, stat].

Spencer, D., Guhaniyogi, R., Shinohara, R., and Prado, R. (2022). Bayesian tensor regression using the Tucker
decomposition for sparse spatial modeling. arXiv preprint arXiv:2203.04733.

Xiao, J. and Wang, Y. (2022). Good oil volatility, bad oil volatility, and stock return predictability. International Review of
Economics & Finance, 80:953–966.

Xiao, J., Wang, Y., and Wen, D. (2023). The predictive effect of risk aversion on oil returns under different market
conditions. Energy Economics, 126:106969.

Yang, J., Levi, E., Craiu, R. V., and Rosenthal, J. S. (2019). Adaptive component-wise multiple-try metropolis sampling.
Journal of Computational and Graphical Statistics, 28(2):276–289.
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